Exponential and Logarithmic Equations

Key Points:

- For any algebraic expressions S and T and any positive real number b, $b^S = b^T$ if and only if S = T.
- For any algebraic expression S and positive real numbers b and c, where $b \neq 1$, $\log_b(S) = c$ if and only if $b^c = S$.
- For any algebraic expressions S and T and any positive real number b, where $b \neq 1$, $\log_b(S) = \log_b(T)$ if and only if S = T.

Exponential and Logarithmic Equations Video

- Solving an Exponential Equation with a Common Base: Example 1
- Solving Equations by Rewriting to have a Common Base: Examples 2-3
- Solving Equation with Positive and Negative Power: Example 4
- Solving an Equation containing Powers of Different Bases: Example 5
- Solving an Exponential Equation of the form y=Ae(kt): Example 6
- Solving an equation that can be simplified to the form y=Ae^(kt): Example
 7
- Solving Exponential Equations in Quadratic Form: Example 8
- Using Algebra to Solve Logarithmic Equations: Examples 9-11
- Solving an Equation using the One to One Property of Logarithms:
 Examples 12-14

Practice Exercises

Follow the directions for each exercise below:

- 1. Solve $216^{3x} * 216^x = 36^{3x+2}$ by rewriting each side with a common base.
- **2.** Use logarithms to find the exact solution for $7 * 17^{-9x} 7 = 49$. If there is no solution, write *no solution*.
- **3.** Use logarithms to find the exact solution for $3e^{6n-2} + 1 = -60$. If there is no solution, write *no solution*.

- **4.** Find the exact solution for $5e^{3x} 4 = 6$. If there is no solution, write *no solution*.
- **5.** Find the exact solution for $2e^{5x-2} 9 = -56$. If there is no solution, write *no solution*.
- **6.** Find the exact solution for $5^{2x-3} = 7^{x+1}$. If there is no solution, write *no solution*.
- 7. Find the exact solution for $e^{2x} e^x 110 = 0$. If there is no solution, write *no solution*.
- 8. Use the definition of a logarithm to solve: $-5 \log_7(10n) = 5$.
- 9. Use the definition of a logarithm to find the exact solution for $9+6\ln(a+3)=33$.

10. Use the one-to-one property of logarithms to find an exact solution for

 $\log_8(7) + \log_8(-4x) = \log_8(5)$. If there is no solution, write no solution.

- **11.** Use the one-to-one property of logarithms to find an exact solution for $\ln(5) + \ln(5x^2 5) = \ln(56)$. If there is no solution, write *no solution*.
- 12. Rewrite $16^{3x-5} = 1000$ as a logarithm. Then apply the change of base formula to solve for x using the natural log. Round to the nearest thousandth.
- 13. Use logarithms to find the exact solution for $-9e^{10a-8} 5 = -41$. If there is no solution, write *no solution*.
- **14.** Find the exact solution for $10e^{4x+2} + 5 = 56$. If there is no solution, write *no solution*.
- **15.** Find the exact solution for $-5e^{-4x-1} 4 = 64$. If there is no solution, write *no solution*.
- **16.** Find the exact solution for $2^{x-3} = 6^{2x-1}$. If there is no solution, write *no solution*.
- 17. Find the exact solution for $e^{2x} e^x 72 = 0$. If there is no solution, write *no solution*.
- 18. Use the definition of a logarithm to find the exact solution for $4 \log(2n) 7 = -11$.
- 19. Use the one-to-one property of logarithms to find an exact solution for $log(4x^2 10) + log(3) = log(51)$. If there is no solution, write *no solution*.

Answers:

1.
$$x = \frac{2}{3}$$

$$2. x = \frac{\log_{\frac{1}{17}}(8)}{9}$$

3. No solution.

4.
$$x = \frac{\ln(2)}{3}$$

5. No solution.

6.
$$x = log_{\frac{25}{7}}(875)$$

7.
$$x = \ln(11)$$

8.
$$n = \frac{1}{70}$$

9.
$$a = e^4 - 3$$

10.
$$x = -\frac{5}{28}$$

11.
$$x = \pm \frac{9}{5}$$

12.
$$x \approx 2.497$$

13.
$$a = \frac{\ln(4) + 8}{10}$$

14.
$$x = \frac{\ln(\frac{51}{10}) - 2}{4}$$

16.
$$x = \log_{18}(\frac{3}{4})$$

17.
$$x = \ln(9)$$

19.
$$x = \pm \frac{3\sqrt{3}}{2}$$